https://github.com/fmohr/lcdb pip install lcdb

LCDB 1.0: An Extensive Learning Curves Database for Classification Tasks

Felix Mohr, Tom J Viering, Marco Loog, Jan N van Rijn

Overview

- Introduction: learning curves
 - What is a learning curve?
 - What can you do with them?
 - Why should we study them more?
- Our database
- Some preliminary results
- Discussion
- Version 2.0 of the database

Training data

3

What can we do with learning curves?

- Estimate the value of additional data
- Faster model selection
- Faster training

Mohr, Felix, and Jan N. van Rijn. "Towards model selection using learning curve cross-validation." AutoML workshop at ICML 2021.

What can we do with learning curves?

- Estimate the value of additional data
- Faster model selection
- Faster training

[1] Loog, Marco, et al. "A brief prehistory of double descent." PNAS 2020
[2] Loog, Marco, Tom Viering, and Alexander Mey. "Minimizers of the empirical risk and risk monotonicity." NeuRIPS 2019
[3] Loog, Marco, and Robert PW Duin. "The dipping phenomenon." IAPR SPR SSPR 2012.

LCDB 1.0: An Extensive Learning Curves Database

[1] Loog, Marco, et al. "A brief prehistory of double descent." PNAS 2020
[2] Loog, Marco, Tom Viering, and Alexander Mey. "Minimizers of the empirical risk and risk monotonicity." NeuRIPS 2019
[3] Loog, Marco, and Robert PW Duin. "The dipping phenomenon." IAPR SPR SSPR 2012.

[1] Loog, Marco, et al. "A brief prehistory of double descent." *PNAS* 2020
[2] Loog, Marco, Tom Viering, and Alexander Mey. "Minimizers of the empirical risk and risk monotonicity." *NeuRIPS* 2019
[3] Loog, Marco, and Robert PW Duin. "The dipping phenomenon."*IAPR SPR SSPR* 2012.

LCDB 1.0: An Extensive Learning Curves Database

[1] Loog, Marco, et al. "A brief prehistory of double descent." *PNAS* 2020
[2] Loog, Marco, Tom Viering, and Alexander Mey. "Minimizers of the empirical risk and risk monotonicity." *NeuRIPS* 2019
[3] Loog, Marco, and Robert PW Duin. "The dipping phenomenon."*IAPR SPR SSPR* 2012.

LCDB 1.0: An Extensive Learning Curves Database

Why study Learning Curves?

- Ill-behaving curves
- Do these behaviours also occur in "real-world" settings?
 - Do you have strange learning curves? Please let us know!
- We have written 2 surveys covering learning curve literature [1,2]
- No consensus on learning curve shape: exponential, power law, ...???
 - PAC learning doesn't say much about the shape [2,3]!
 - Scaling laws for CNN's: power law seems to work relatively well [2]
 - What about tabular data / typical learners such as SVM's, KNN, etc.?

[1] Mohr, F., van Rijn, J.N.: Learning curves for decision making in supervised machine learning - A survey. Arxiv 2022
[2] Viering, T.J., Loog, M.: The shape of learning curves: a review. Arxiv 2021
[3] Bousquet, Olivier, et al. A theory of universal learning. ACM SIGACT STOC. 2021.

Our database

- 20 learners on 246 datasets (openML)
- Training set sizes $s_i = [2^{(7+i)/2}]$, s = [16,23,32,...]
- Bootstrapping: 25 train / validation / test splits
- Precomputed error rate, F1, AUC ROC, log loss
- Provide all predictions (can compute any metric)
- Getting our data: pip install lcdb

Help us analyse all these curves!

 $20 \times 246 \times 25 \times 4 \approx$ half a million learning curves

Some preliminary results

- Monotonicity
- Peaks
- Crossings
- Shape: power law, exponential, ...?

Monotone?

• Define *x* measuring the violation of monotonicity

Peaks?

• Define "peak": percentage of datasets with a peak in the curve

Shape?

- We fit learning curves and extrapolate to the last point
- Mean Squared Error (MSE)
- Wbl4 and mmf4 perform best on average

Model	Formula	Model	Formula
last1	a	vap3	$\exp\left(a + \frac{b}{x} + c\log(x)\right)$
pow2	$-ax^{-b}$	ехррЗ	$c - \exp\left(\left(-b + x\right)^a\right)$
log2	$-a\log\left(x\right)+b$	expd3	$c - (-a + c) \exp(-bx)$
exp2	$a\exp(-bx)$	logpow3	$a/\left((x\exp(-b))^c+1\right)$
lin2	ax + b	pow4	$a - b \left(d + x \right)^{-c}$
ilog2	$-a/\log(x) + b$	mmf4	$(ab + cx^d)/(b + x^d)$
роwЗ	$a - bx^{-c}$	wbl4	$-b\exp(-ax^d)+c$
ехр3	$a\exp(-bx) + c$	exp4	$c - \exp(-ax^d + b)$

Discussion

- Surprisingly 4 parameter models perform best for extrapolation
 - Not exponential or power law! (as suggested by most prior literature)
 - Avoided in prior studies due to overfitting concerns
- Curve fitting is *notoriously* difficult!
 - We average 25 learning curves to make curves smoother
 - Still 2% of fits fail (we use Levenberg-Marquadt, standard approach from literature)
 - Any curve fitting experts? Please come to us!
- Analysis is preliminary

Version 2.0 of the database

- Support for scikit pipelines
 - So we can do feature scaling, hyperparameter tuning, ...
- We used default hyperparameters for all learners
 - Ideally tuned in 2.0
- We sample all training sets independently (bootstrap)
 - For 2.0 we want a variant where training sets s_i, s_{i+1} satisfy $s_{i+1} \subset s_i$

LCDB 1.0: An Extensive Learning Curves Database for Classification Tasks

Felix Mohr, Tom J Viering, Marco Loog, Jan N van Rijn

Help us analyse/fit curves!

https://github.com/fmohr/lcdb

pip install lcdb

Paper 1317

Poster tomorrow **Zone A**

