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In active learning, an algorithm tells you which samples to
annotate. By selecting ‘smart’ samples the model learns faster.

Single Shot Batch Active Learning
Input: labeling budget n, unlabeled pool P̂
1. Active learner selects Q̂ ∈ P̂ such that sim(P̂ , Q̂) minimal
2. Request labels for Q̂
3. Train Kernel Ridge Regression model on Q̂
4. Evaluate model on unseen test set

Domain Adaptation Bounds for AL

LP (h, f ) ≤ LQ̂(h, f ) + sim(P̂ , Q̂) + C + η

• h is trained model, f is (unknown) true labeling function
• LP (h, f ) loss on (unknown) distribution P
• LQ̂(h, f ) loss on training set
• C complexity (e.g. VCdim), η model misspecification
• sim(P̂ , Q̂) similarity measure

Domain Similarity Measures sim(P̂ , Q̂)
• Discrepancy [Mansour 2009]
• Maximum Mean Discrepancy (MMD) [Gretton 2012]
• Nuclear Discrepancy (proposed)

Which similarity measure is best for AL and why?

Setting
Measure performance in terms of mean squared error (MSE). We
use the Kernel Ridge Regression model and indicate the model
class by H = {h ∈ H : ||h||K ≤ Λ} (H is the RKHS).

Theoretical Analysis
To derive bounds, we need to bound the following quantity:
|LP̂ (h, f )− LQ̂(h, f )|. Assume f ∈ H. Discrepancy bound:

max
h,f∈H

|LP̂ (h, f )− LQ̂(h, f )| = disc(Q̂, P̂ )

Note it depends on model class and loss function! We transform
the MMD to also depend on model class and loss function:

MMD(P̂ , Q̂) = max
l∈H′

1
nP̂

∑
x∈P̂

l(x)− 1
nQ̂

∑
x∈Q̂

l(x)

l can approximate the loss: (h(x)− f (x))2. We choose H′ so it
contains the loss function. Example: if h, f are linear in x, H′

must be quadratic. For kernel: KMMD(xi, xj) = Kmodel(xi, xj)2.
Now MMD takes loss and model class into account.

New result: now the Discrepancy bound is tighter under a
worst-case assumption. Better AL performance? No! Why not?

Probabilistic Analysis
Let M = 1

nP̂
XT
P̂
XP̂ −

1
nQ̂
XT
Q̂
XQ̂, and e1, . . . , ed be the eigenvec-

tors such that |λ1| ≥ . . . ≥ |λd|. Let u = h− f and vi = uTei.
The Discrepancy is given by disc(P̂ , Q̂) = 4Λ2|λ1|. In the

worst case u ∝ e1: meaning we only consider a very specific u.
The following should be small for good performance:

|LP̂ (h, f )− LQ̂(h, f )| = |uTMu| ≤
d∑
i

|λi|v2
i

All eigenvalues λi should be minimized if u 6= e1! Furthermore,
for the Discrepancy, the true labeling function f depends on our
choice of sample Q̂. This assumption is too pessimistic for AL.

Solution: Nuclear Discrepancy
We build a probabilistic bound where u ∼ p(u):

• From symmetry arguments p(u) should be symmetric
• Our choice of samples should not influence f or p(u)

We choose p(u) to be uniform on a ball centered on the origin.
In that case, one should optimize the Nuclear Discrepancy:

ND(P̂ , Q̂) = 4Λ2
d∑
i

|λi|

Experiments and Results
• Evaluate on 15 datasets
• Performance: Area Under the MSE Learning Curve (AULC)
• Preprocess data s.t. η = 0 (realizeable)
Bound \ Setting Worst-case Our p(u) Performance
Discrepancy Tightest Loosest Worst
MMD Medium Medium Medium
ND (ours) Loosest Tightest Best
• Our assumption on p(u) explains observed performance!

Discussion and Conclusion
• Further investigation needed to understand agnostic case

(η 6= 0), but similar trend observed
• Bound tightness not most important, accurate assumptions

are just as important
• MMD with squared loss: squared kernel is a natural choice
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