Minimizers of the Empirical Risk and Risk Monotonicity

Marco Loog^{+×} Tom Viering⁺ Alexander Mey⁺ ⁺Delft University of Technology [×]University of Copenhagen

Introduction. It

Definition. A learner is weakly monotonic with re-

seems intuitive for learning curves to display monotonic improvement with every added training sample. We show: various well-known

empirical risk minimizers can, in fact, behavior nonmonotonically, even for arbitrarily large training sample SIZES.

Risk monotonicity. $S_n = (z_1, \ldots, z_n)$ training set i.i.d. from distribution D over a domain \mathcal{Z} . \mathcal{H} hypothesis class and ℓ : $\mathcal{Z} \times \mathcal{H} \to \mathbb{R}$ a loss function. Objective: minimize

spect to a loss ℓ if there is an integer $N \in \mathbb{N}$ such that for all $n \geq N$ and for all distributions D on \mathcal{Z} ,

 $\mathbb{E}_{S_{n+1}\sim D^{n+1}}[R_D(A(S_{n+1})) - R_D(A(S_n))] \leq 0.$ (3)

Theorem 0. Take H the class of normal distributions with fixed covariance, the mean to be estimated, $\mathcal{Z} \subset \mathbb{R}^d$, and the negative log-likelihood as loss. If \mathcal{Z} is bounded, the learner A_{erm} is monotonic.

Of more interest are the negative results.

Theorem 1. If \exists open ball B_0 that contains 0, such that $B_0 \subset \mathcal{Z}$, then estimating the variance using negative log-likelihood of a one-dimensional normal density is not weakly monotonic.

$$R_D(h) := \mathop{\mathbb{E}}_{z \sim D} \ell(z, h). \tag{1}$$

Let $\mathcal{S} := \mathcal{Z} \cup \mathcal{Z}^2 \cup \mathcal{Z}^3 \cup \ldots$ and learner $A_{\text{erm}} : \mathcal{S} \to \mathcal{H}$ minimizes the empirical risk R_{S_n} over the training set:

$$A_{\text{erm}}(S_n) := \underset{h \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell(z_i, h).$$
(2)

Theorem 2. Consider a linear A_{erm} without intercept and assume it either optimizes the squared, the absolute, or the hinge loss. Assume \mathcal{Y} contains at least one nonzero element. If \exists open ball B_0 that contains 0, such that $B_0 \subset \mathcal{X}$, then this risk minimizer is not weakly monotonic.

Experiments. Subfigures a, b, c consider distributions with two points: a = (1, 1) and $b = (\frac{1}{10}, 1)$ (first coordinate input, second output). Subfigure d's distribution is supported on three points: a = (1, 1), $b = (\frac{1}{10}, -1)$, and c = (-1, 1) (input, output) with P(a) = 0.01, P(b) = 0.01, and P(c) = 0.98.