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1Introduction. It

seems intuitive for

learning curves to

display monotonic

improvement with

every added training

sample. We show:

various well-known

empirical risk minimizers can, in fact, behavior non-

monotonically, even for arbitrarily large training sample

sizes.

Risk monotonicity. Sn = (z1, . . . , zn) training set

i.i.d. from distribution D over a domain Z. H hy-

pothesis class and ℓ : Z ×H → R a loss function.

Objective: minimize

RD(h) := E
z∼D

ℓ(z, h). (1)

Let S := Z ∪Z2 ∪Z3 ∪ . . . and learner Aerm : S → H

minimizes the empirical risk RSn over the training set:

Aerm(Sn) := argmin
h∈H

1

n

n∑

i=1

ℓ(zi , h). (2)

Definition. A learner is weakly monotonic with re-

spect to a loss ℓ if there is an integer N ∈ N such

that for all n ≥ N and for all distributions D on Z,

E
Sn+1∼D

n+1

[RD(A(Sn+1))− RD(A(Sn))] ≤ 0. (3)

Theorem 0. Take H the class of normal distribu-

tions with fixed covariance, the mean to be estimated,

Z ⊂ Rd , and the negative log-likelihood as loss. If Z

is bounded, the learner Aerm is monotonic.

Of more interest are the negative results.

Theorem 1. If ∃ open ball B0 that contains 0, such

that B0 ⊂ Z, then estimating the variance using nega-

tive log-likelihood of a one-dimensional normal density

is not weakly monotonic.

Theorem 2. Consider a linear Aerm without intercept

and assume it either optimizes the squared, the abso-

lute, or the hinge loss. Assume Y contains at least

one nonzero element. If ∃ open ball B0 that contains

0, such that B0 ⊂ X , then this risk minimizer is not

weakly monotonic.
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(a) Squared loss.

P (a) = 0.00001
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(b) Absolute loss.

P (a) = 0.1

0 10 20 30 40

0.4

0.5

0.6

0.7

0.8

0.9

(c) Squared and regularized

loss. P (a) = 0.01
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(d) Squared loss and bias

term.

Experiments. Subfigures a, b, c consider distributions with two points: a = (1, 1) and b = ( 1
10
, 1) (first

coordinate input, second output). Subfigure d’s distribution is supported on three points: a = (1, 1),

b = ( 1
10
,−1), and c = (−1, 1) (input, output) with P (a) = 0.01, P (b) = 0.01, and P (c) = 0.98.
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