

UNIVERSITY OF COPENHAGEN

How to Manipulate CNNs to Make Them Lie: the GradCAM Case

Tom Viering, Ziqi Wang, Marco Loog, Elmar Eisemann BMVC 2019 Workshop Interpretable & Explainable Machine Vision

Manipulated

VGG-16

What is an Explanation?

- Explain CNN decisions using heatmaps
- Blue pixels: more important for CNN decisions

Why are explanations important?

Amazon reportedly scraps internal AI recruiting tool that was biased against women

The secret program penalized applications that contained the word "women's"

By James Vincent | Oct 10, 2018, 7:09am EDT

theverge.com

ŤUDelft

[1] Adadi, A., & Berrada, M. Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018.

How can CNNs be manipulated?

- Republishing model weights ('porting' to another framework)
- Outsourcing training to the cloud

1337learner 5G16 models for CIFAR-10 and	CIFAR-100 using Kera			×	
② 14 commits	¥ 1 branch	© 0 releases	AL 1 contributor		
Branch master • New pull request			Find Fi	Cone or download +	
geifmany Updated training loop			Latest comm	t #764664 on 27 Mar 2018	
) gitignore	Initial commit		2 years ago		
UCENSE	Initia	l commit	2 years ago		
READMErnd	Upd	ate README.md	1000	2 years ago	
cifar100vgg.py	Upd	ated training loop		last year	
		ated training loop		last year	

ŤUDelft

CNN backdoor triggered by sticker [2]

[2] Gu et. al. Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv preprint 2017.

Overview

- Attacks manipulate weights and architecture of already trained CNN
- CNN performance is maintained
- Explanation of GradCAM [3] is manipulated
- Lie: *explanation* is incorrect but prediction correct

[3] Selvaraju et. al. Grad-cam: Visual explanations from deep networks via gradient-based localization. ICCV 2017.

Gradcam output

Attack 4

Attack 3

Attack 2

ŤUDelft

Attack 4: backdoor

Normal image

Normal explanation

Image with pattern

ŤUDelft

Manipulated explanation

ŤUDelft

Overview

	Attack 1 & 2	Attack 3 & 4	
	Static attack	Dynamic attack	
	Only extra filter and FC weights	Need extra branch, nonstandard function <i>G</i>	
Architecture change reveals attack?	Νο	Yes	
Visualizing explanations reveals attack?	Yes	Νο	

Experiment & Results

- ILSVRC 2012 (Imagenet) validationset
- VGG-16

- Accuracy changes at most of 0.002%
- Distance between observed and desired explanation on average 0.06 in L_1 distance

Discussion

- GradCAM is not 'broken', but does not always work!
 - Does not work if attacked
 - Other (more natural) cases where GradCAM doesn't work?
 - Under what circumstances does it work?
- Models with similar predictions should return similar explanations?
 - Would rule out our attacks
- Future work: attack without architectural changes
 - Attack only contained in weights
 - Very hard to detect

Conclusion

GradCAM output cannot always be trusted!

Thanks!

Tom Viering, Ziqi Wang, Marco Loog, Elmar Eisemann

ŤUDelft

Results 1-3

Desired - Actual explanation

Table 1: Evaluation of manipulated networks T1-T3 on the ILSVRC2012 validation set.

Results 4

	Change in score (output before softmax)			Desired - Actuer explanation	
Dataset	Network	Accuracy	$ y_o - y_n _{\infty}$	$ \tilde{I}_T - \tilde{I}_n _1$	
Original	Original T4: backdoor	0.71592 0.71592	- 0.00000	- 0.00000	
Manipulated (sticker)	Original T4: backdoor	0.69048 0.69048	- 0.00000	- 0.00006	

Table 2: Evaluation of Technique 4 on the ILSVRC2012 validation set.

