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Outline

« Motivation for AL, setting

« Domain adaptation bounds for AL
— MMD, Discrepancy, Nuclear Discrepancy

* Theoretical results
* EXperiments
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Setting

* Alot of unlabeled data (unannotated reordings)
* Few labeled data (annotated recordings)

« Labeling: expensive, time consuming, difficult

]
TUDelft 3



]
TUDelft

Active Learning

« Algorithm (active learner) selects what data to annotate
« Model can learn faster from ‘smart’ selection of data

Loss

Active

Random

>

# annotations / $$$



Single-shot Batch AL procedure

Input: label budget n, unlabeled data P

1. Active learner (AL) chooses n samples Q € P
such that div(Q, P) minimized

2. Request labels for Q

3. Train KRR model on Q
4. Evaluate on unseen test set

 Note: AL never sees labels.
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— Selects ‘representative’ samples
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Generalization bounds

« Squared loss L, binary classification

* Model: h, kernel ridge regression model,
h € H (RKHS)
« Unknown:

— Distribution P over input space x,
— Deterministic labeling function f, y = f(x)
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Domain Adaptation Bounds for AL

Labelled Source
P Unlabelled Target

Q)

* Domain adaptation bounds:
— Lp(h, f) <Ly (hf) +div(Q,P) + C +1n

Complexity term
(ignore)




What Divergence to use?

 From Domain Adaptation:

— MMD [Huang 2007], also used for AL by
Chattopadhyay et. al. (2012)

— Discrepancy [Cortes, Mohri 2011]

* Research questions:
— How do the MMD and Disc. compare?
— Why one or the other better for AL?
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Recap: how to get to the Discrepancy?

* Quantity to bound: [Ls(h, f) — Ls (h, f)]
« Assume f € H (realizeable)
« Consider worst case over h, f:

© max |Lp(h, ) = Lo (hf) | = disc(Q, P)

* Depends on model class, loss function
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Compare to MMD

Quantity to bound: |Ls(h, f) — Lg (h, )|

~ A 1 1
MMD(P,Q) = max —Y__51(x) — %er@ [(x)

leH' Np
— H'is usually heuristically chosen as RKHS of a RBF kernel

Idea: use I(x) = (h(x) — f(x))2 to relate both

This analysis suggests how to choose H':
— MMD and Disc now compareable!
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Compare Disc and MMD

* Assume worst case for f, h
A A MMD (coarse)
o dlSC(Q, P) S MMD(Q, P) |rl!L1}L!;yt||111}1lllulluqng\nl\m\

e DiIsc pI‘OVideS t|ghter bound! i
— Disc provides better AL? Discrepancy (fine)

— Empirically: MMD beats Disc. Why?
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Disc Is too pessimistic
° u = h _f
© M =XiX —%ngé :

* Letey,e,,..,e; be orthonormal eigenvectors |
« Eigenvalues 1| = |A,| = -+ = |14]

« Then |Lp(h, f) — Lo (h, )| = [uTMu| < T A1 (w; - €)? P

. Select objects

« Disc assumes worst case for f, h, then u < e;
— Assumes u in very specific direction
— Disc(P,Q) o |14
5 — Our choice § determines f, very pessimistic
TUDelft |  determines , very p
— Disc. doesn’t ‘spread’ well




Nuclear Discrepancy

 Assume u~p(u) and create probabilistic bound (holds in expectation)
— p(u) should be symmetric
— Should be independent of our choice

* Choose p(u) uniform on sphere centered at origin [optimistic case|
— Optimal strategy: minimize Nuclear Discrepancy (proposed)

— ND(P,Q) = X%|%;) (all directions are equally important)
— In this case, ND(P,Q) < MMD(P,Q) < Disc(P, Q)
— Our bound is tightest under this assumption
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Experimental setup

* Preprocess to remove model misspecification
— Train KRR on whole dataset, use predictions as new targets
— Assumption n = 0 satisfied. Bounds compareable.

— Good hyperparameters make sure this is a reasonable
approximation of the original binary label.

- Optimize div(Q, P) greedily

— Discrepancy, MMD, Nuclear Discrepancy
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Experimental setup

 Budget=1,2,3,...,50.

* Repeat 100 times Learning Curve
—  New trn/tst splits MNIST 5vs8
* Evaluate on 15 datasets 0.05r
© of
2]
: ®-0.05}
* Performance in MSE =
cC 01t
- Area Under Learning Curve @ 015l
— summarizes performance for multiple % 02
budgets (standard in AL) s
£ -0.25}
© = = = Djsc (worst case)
) o ) ) % 0.3F s e Nuclear Disc (optimistic case)
MMD imisti
*  Significance test using paired Sossll | Hand(f:’ss'm's‘“ case)
t-test (p = 0.05) 04

"0 5 10 15 20 25 30 35 40 45 50
Batch size n
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Results

Table 2 Area Under the mean squared error Learning Curve (AULC) for the strategies in the realizable setting,
averaged over 100 runs

Dataset Random Discrepancy MMD Nuclear Discrepancy
vehicles 11.1(2.2) 8.0 (1.0) 7.9 (0.9) 7.9 (0.9)
heart 3.5(0.8) 2.3(0.3) 2.2(0.3) 2.1(0.3)
sonar 13.9 (1.7) 12.5(1.2) 11.9(1.1) 11.3(1.2)
thyroid 6.8 (1.5) 5.2(0.9) 5.1(0.9) 5.0 (1.0)
ringnorm 13.2(1.2) 12.7 (0.8) 10.0 (0.3) 9.4 (0.3)
ionosphere 7.0(1.3) 5.6 (0.8) 5.0 (0.8) 4.6 (0.6)
diabetes 1.7 (0.4) 1.2 (0.1) 1.2 (0.1) 1.2 (0.1)
twonorm 6.4(1.2) 4.1 (0.4) 3.7 (0.4) 3.3(0.3)
banana 7.5(0.9) 5.0 (0.4) 4.8 (0.3) 4.8 (0.3)
german 1.4 (0.3) 1.2 (0.1) 1.1(0.1) 1.0 (0.1)
splice 10.8 (1.3) 9.9 (0.8) 9.9 (0.9) 9.0 (0.9)
breast 3.4(0.9) 2.1(0.2) 2.1(0.2) 2.0(0.2)
mnist 3vs5 29.5 (4.3) 26.9(2.3) 25.0(2.1) 23.8 (1.7)
mnist 7vs9 13.2(2.5) 109 (1.4) 10.0 (1.0) 8.9 (0.7)
(; mnist Svs8 30.1(3.4) 26.9 (2.7) 26.1(2.3) 24.5(2.1)
TU Delft Bold indicates the best result, or results that are not significantly worse than the best result, according to a

paired t-test (p = 0.05). Parenthesis indicate standard deviation 16
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Results

Assumption
Bound

Disc
MMD
ND (ours)

Worst-case

Tightest
Medium
Loosest

Optimistic
Case p(u)
Loosest
Medium

Tightest

Performance

Worst
Medium
Best
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Discussion / Future work

« With no preprocessing:
— Bounds not directly comparable (nyup # NMpisc)
— Similar trend observed
— Needs further investigation

* Now MSE, what about accuracy? Multiple rounds?

» Our results support the ideas of
— Germain et. al. (2013): probabilistic bounds for DA

— Cortes et. al. (2019): more refined worst-case analysis for
Discrepancy for DA 18
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Conclusion

« Tighter bounds # improved performance
« Assumptions of bounds: at least as important!

* Bonus theoretical results for MMD:
— Interpretation as probabilistic generalization bound

2. .
— Squared kernel Kyup(xi, %) = Kmoaer(xi,%;)” is @ natural choice for
H' in case of regression
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Thanks!

Tom J Viering, Jesse H Krijthe, Marco Loog

Nuclear Discrepancy for Single-Shot Batch Active Learning
Code online: https://github.com/tomviering/NuclearDiscrepancy
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