

ŤUDelft

Nuclear Discrepancy for Single-Shot Batch Active Learning

Tom J Viering, Jesse H Krijthe, Marco Loog ECML 2019 Optimization and <u>Learning Theory</u>

Code online: https://github.com/tomviering/NuclearDiscrepancy

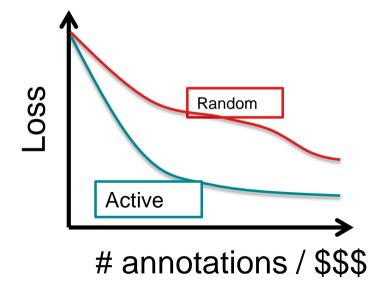
Outline

- Motivation for AL, setting
- Domain adaptation bounds for AL
 - MMD, Discrepancy, Nuclear Discrepancy
- Theoretical results
- Experiments

- A lot of unlabeled data (unannotated recordings)
- Few labeled data (annotated recordings)
- Labeling: expensive, time consuming, difficult

Active Learning

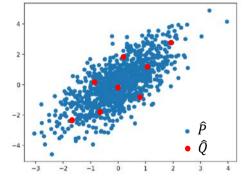
- Algorithm (active learner) selects what data to annotate
- Model can learn faster from 'smart' selection of data



Single-shot Batch AL procedure

Input: label budget n, unlabeled data \hat{P}

- 1. Active learner (AL) chooses *n* samples $\hat{Q} \in \hat{P}$ such that $div(\hat{Q}, \hat{P})$ minimized
- **2.** Request labels for \hat{Q}
- 3. Train KRR model on \hat{Q}
- 4. Evaluate on unseen test set
- Note: AL never sees labels.
 - Selects 'representative' samples

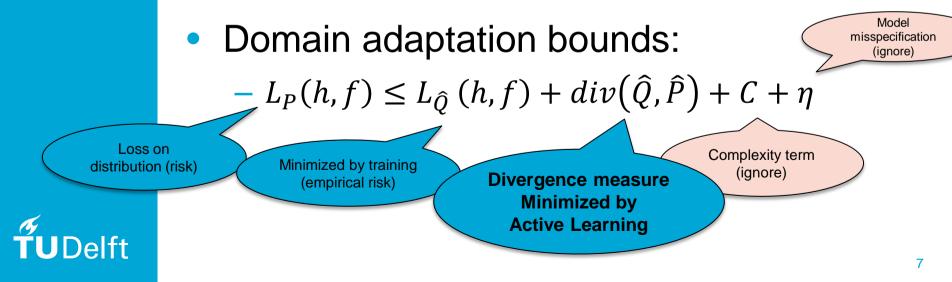


Generalization bounds

- Squared loss *L*, binary classification
- Model: *h*, kernel ridge regression model,
 h ∈ *H* (RKHS)
- Unknown:
 - Distribution P over input space x,
 - Deterministic labeling function f, y = f(x)

Domain Adaptation Bounds for AL

Empirical Sample	Active Learning	Domain Adaptation
\widehat{Q}	Labelled	Source
\widehat{P}	Unlabelled	Target



What Divergence to use?

- From Domain Adaptation:
 - MMD [Huang 2007], also used for AL by Chattopadhyay et. al. (2012)
 - Discrepancy [Cortes, Mohri 2011]

- Research questions:
 - How do the MMD and Disc. compare?
 - Why one or the other better for AL?

Recap: how to get to the Discrepancy?

- Quantity to bound: $|L_{\hat{P}}(h, f) L_{\hat{Q}}(h, f)|$
- Assume $f \in H$ (realizeable)
- Consider worst case over *h*, *f*:
- $\max_{f,h\in H} |L_{\hat{P}}(h,f) L_{\hat{Q}}(h,f)| = disc(\hat{Q},\hat{P})$
- Depends on model class, loss function

Compare to MMD

• Quantity to bound: $|L_{\hat{P}}(h, f) - L_{\hat{Q}}(h, f)|$

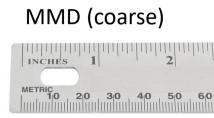
•
$$MMD(\hat{P},\hat{Q}) = \max_{l \in H'} \frac{1}{n_{\hat{P}}} \sum_{x \in \hat{P}} l(x) - \frac{1}{n_{\hat{Q}}} \sum_{x \in \hat{Q}} l(x)$$

- H' is usually heuristically chosen as RKHS of a RBF kernel

- Idea: use $l(x) \approx (h(x) f(x))^2$ to relate both
- This analysis suggests how to choose H':
 - MMD and Disc now compareable!

Compare Disc and MMD

- Assume worst case for *f*, *h*
- $disc(\hat{Q}, \hat{P}) \leq MMD(\hat{Q}, \hat{P})$
- Disc provides tighter bound!
 - Disc provides better AL?
 - Empirically: MMD beats Disc. Why?



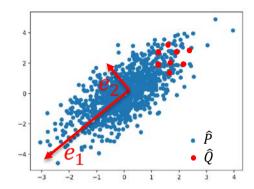
Discrepancy (fine)

Disc is too pessimistic

•
$$u = h - f$$

•
$$M = \frac{1}{n_{\widehat{P}}} X_{\widehat{P}}^T X_{\widehat{P}} - \frac{1}{n_{\widehat{Q}}} X_{\widehat{Q}}^T X_{\widehat{Q}}$$

- Let e_1, e_2, \dots, e_d be orthonormal eigenvectors
- Eigenvalues $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_d|$



In that case

select $f = \dots$

Select objects x_1, x_5

Adversary

- Then $|L_{\hat{P}}(h, f) L_{\hat{Q}}(h, f)| = |u^T M u| \le \sum_{i=1}^{d} |\lambda_i| (u_i \cdot e_i)^2$
- Disc assumes worst case for f, h, then $u \propto e_1$ Active Learner
 - Assumes u in very specific direction
 - $Disc(\hat{P}, \hat{Q}) \propto |\lambda_1|$
 - Our choice \hat{Q} determines f, very pessimistic
 - Disc. doesn't 'spread' well

Nuclear Discrepancy

- Assume $u \sim p(u)$ and create probabilistic bound (holds in expectation)
 - p(u) should be symmetric
 - Should be independent of our choice \hat{Q}
- Choose p(u) uniform on sphere centered at origin [optimistic case]
 - Optimal strategy: minimize Nuclear Discrepancy (proposed)
 - $ND(\hat{P}, \hat{Q}) = \sum_{i}^{d} |\lambda_{i}|$ (all directions are equally important)
 - In this case, $ND(\hat{P}, \hat{Q}) \leq MMD(\hat{P}, \hat{Q}) \leq Disc(\hat{P}, \hat{Q})$
 - Our bound is tightest under this assumption

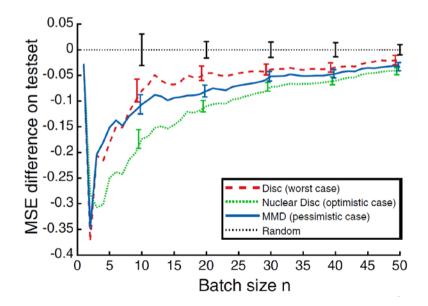
Experimental setup

- Preprocess to remove model misspecification
 - Train KRR on whole dataset, use predictions as new targets
 - Assumption $\eta = 0$ satisfied. Bounds compareable.
 - Good hyperparameters make sure this is a reasonable approximation of the original binary label.
- Optimize $div(\hat{Q}, \hat{P})$ greedily
 - Discrepancy, MMD, Nuclear Discrepancy

Experimental setup

- Budget = 1,2,3,...,50.
- Repeat 100 times
 - New trn/tst splits
- Evaluate on 15 datasets
- Performance in MSE
- Area Under Learning Curve
 - summarizes performance for multiple budgets (standard in AL)
- Significance test using paired t-test (p = 0.05)

Learning Curve MNIST 5vs8



Results

Table 2Area Under the mean squared error Learning Curve (AULC) for the strategies in the realizable setting,averaged over 100 runs

Dataset	Random	Discrepancy	MMD	Nuclear Discrepancy
vehicles	11.1 (2.2)	8.0 (1.0)	7.9 (0.9)	7.9 (0.9)
heart	3.5 (0.8)	2.3 (0.3)	2.2 (0.3)	2.1 (0.3)
sonar	13.9 (1.7)	12.5 (1.2)	11.9 (1.1)	11.3 (1.2)
thyroid	6.8 (1.5)	5.2 (0.9)	5.1 (0.9)	5.0 (1.0)
ringnorm	13.2 (1.2)	12.7 (0.8)	10.0 (0.3)	9.4 (0.3)
ionosphere	7.0 (1.3)	5.6 (0.8)	5.0 (0.8)	4.6 (0.6)
diabetes	1.7 (0.4)	1.2 (0.1)	1.2 (0.1)	1.2 (0.1)
twonorm	6.4 (1.2)	4.1 (0.4)	3.7 (0.4)	3.3 (0.3)
banana	7.5 (0.9)	5.0 (0.4)	4.8 (0.3)	4.8 (0.3)
german	1.4 (0.3)	1.2 (0.1)	1.1 (0.1)	1.0 (0.1)
splice	10.8 (1.3)	9.9 (0.8)	9.9 (0.9)	9.0 (0.9)
breast	3.4 (0.9)	2.1 (0.2)	2.1 (0.2)	2.0 (0.2)
mnist 3vs5	29.5 (4.3)	26.9 (2.3)	25.0 (2.1)	23.8 (1.7)
mnist 7vs9	13.2 (2.5)	10.9 (1.4)	10.0 (1.0)	8.9 (0.7)
mnist 5vs8	30.1 (3.4)	26.9 (2.7)	26.1 (2.3)	24.5 (2.1)

Bold indicates the best result, or results that are not significantly worse than the best result, according to a paired t-test (p = 0.05). Parenthesis indicate standard deviation

Results

Assumption Bound	Worst-case	Optimistic Case $p(u)$	Performance
Disc	Tightest	Loosest	Worst
MMD	Medium	Medium	Medium
ND (ours)	Loosest	Tightest	Best

Discussion / Future work

- With no preprocessing:
 - Bounds not directly comparable $(\eta_{MMD} \neq \eta_{Disc})$
 - Similar trend observed
 - Needs further investigation
- Now MSE, what about accuracy? Multiple rounds?
- Our results support the ideas of
 - Germain et. al. (2013): probabilistic bounds for DA
 - Cortes et. al. (2019): more refined worst-case analysis for **Discrepancy for DA** 18

Conclusion

- Tighter bounds \neq improved performance
- Assumptions of bounds: at least as important!

- Bonus theoretical results for MMD:
 - Interpretation as probabilistic generalization bound
 - Squared kernel $K_{MMD}(x_i, x_j) = K_{model}(x_i, x_j)^2$ is a natural choice for H' in case of regression

Thanks!

Tom J Viering, Jesse H Krijthe, Marco Loog

TUDelft

Nuclear Discrepancy for Single-Shot Batch Active Learning Code online: https://github.com/tomviering/NuclearDiscrepancy