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Outline

• Motivation for AL, setting
• Domain adaptation bounds for AL

– MMD, Discrepancy, Nuclear Discrepancy
• Theoretical results
• Experiments
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Setting

• A lot of unlabeled data (unannotated recordings)
• Few labeled data (annotated recordings)

• Labeling: expensive, time consuming, difficult
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Active Learning

Random

Lo
ss

# annotations / $$$

Active

• Algorithm (active learner) selects what data to annotate
• Model can learn faster from ‘smart’ selection of data
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Single-shot Batch AL procedure
Input: label budget 𝑛𝑛, unlabeled data �𝑃𝑃
1. Active learner (AL) chooses 𝑛𝑛 samples �𝑄𝑄 ∈ �𝑃𝑃

such that 𝑑𝑑𝑑𝑑𝑑𝑑 �𝑄𝑄, �𝑃𝑃 minimized
2. Request labels for �𝑄𝑄
3. Train KRR model on �𝑄𝑄
4. Evaluate on unseen test set

• Note: AL never sees labels. 
– Selects ‘representative’ samples

�𝑃𝑃
�𝑄𝑄
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Generalization bounds

• Squared loss 𝐿𝐿, binary classification
• Model: ℎ, kernel ridge regression model, 
ℎ ∈ 𝐻𝐻 (RKHS)

• Unknown: 
– Distribution 𝑃𝑃 over input space 𝑥𝑥, 
– Deterministic labeling function 𝑓𝑓, y = 𝑓𝑓(𝑥𝑥)
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Domain Adaptation Bounds for AL

• Domain adaptation bounds:
– 𝐿𝐿𝑃𝑃 ℎ,𝑓𝑓 ≤ 𝐿𝐿 �𝑄𝑄 ℎ,𝑓𝑓 + 𝑑𝑑𝑑𝑑𝑑𝑑 �𝑄𝑄, �𝑃𝑃 + 𝐶𝐶 + 𝜂𝜂

Empirical Sample Active Learning Domain Adaptation
Labelled Source
Unlabelled Target

Loss on 
distribution (risk)

Complexity term
(ignore)Minimized by training 

(empirical risk) Divergence measure
Minimized by 

Active Learning

Model 
misspecification 

(ignore)
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What Divergence to use?
• From Domain Adaptation:

– MMD [Huang 2007], also used for AL by 
Chattopadhyay et. al. (2012)

– Discrepancy [Cortes, Mohri 2011]

• Research questions:
– How do the MMD and Disc. compare?
– Why one or the other better for AL?
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Recap: how to get to the Discrepancy?

• Quantity to bound: |𝐿𝐿 �𝑃𝑃 ℎ, 𝑓𝑓 − 𝐿𝐿 �𝑄𝑄 ℎ,𝑓𝑓 |
• Assume 𝑓𝑓 ∈ 𝐻𝐻 (realizeable)
• Consider worst case over ℎ, 𝑓𝑓:
• max

𝑓𝑓,ℎ∈𝐻𝐻
|𝐿𝐿 �𝑃𝑃 ℎ,𝑓𝑓 − 𝐿𝐿 �𝑄𝑄 ℎ,𝑓𝑓 | = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝑄𝑄, �𝑃𝑃

• Depends on model class, loss function
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Compare to MMD
• Quantity to bound: |𝐿𝐿 �𝑃𝑃 ℎ,𝑓𝑓 − 𝐿𝐿 �𝑄𝑄 ℎ,𝑓𝑓 |

• 𝑀𝑀𝑀𝑀𝑀𝑀 �𝑃𝑃, �𝑄𝑄 = max
𝑙𝑙∈𝐻𝐻′

1
𝑛𝑛�𝑃𝑃
∑𝑥𝑥∈ �𝑃𝑃 𝑙𝑙(𝑥𝑥) − 1

𝑛𝑛�𝑄𝑄
∑𝑥𝑥∈ �𝑄𝑄 𝑙𝑙(𝑥𝑥)

– 𝐻𝐻𝐻 is usually heuristically chosen as RKHS of a RBF kernel

• Idea: use 𝑙𝑙 𝑥𝑥 ≈ ℎ 𝑥𝑥 − 𝑓𝑓 𝑥𝑥
2 to relate both

• This analysis suggests how to choose 𝐻𝐻′:
– MMD and Disc now compareable!
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Discrepancy (fine)

MMD (coarse)

Compare Disc and MMD

• Assume worst case for 𝑓𝑓,ℎ
• 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝑄𝑄, �𝑃𝑃 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀 �𝑄𝑄, �𝑃𝑃
• Disc provides tighter bound!

– Disc provides better AL?
– Empirically: MMD beats Disc. Why?
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Active Learner

Adversary

Disc is too pessimistic
• 𝑢𝑢 = ℎ − 𝑓𝑓

• 𝑀𝑀 = 1
𝑛𝑛�𝑃𝑃
𝑋𝑋�𝑃𝑃
𝑇𝑇𝑋𝑋 �𝑃𝑃 −

1
𝑛𝑛�𝑄𝑄
𝑋𝑋 �𝑄𝑄
𝑇𝑇𝑋𝑋 �𝑄𝑄

• Let 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑑𝑑 be orthonormal eigenvectors
• Eigenvalues 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑑𝑑

• Then |𝐿𝐿 �𝑃𝑃 ℎ, 𝑓𝑓 − 𝐿𝐿 �𝑄𝑄 ℎ, 𝑓𝑓 | = |𝑢𝑢𝑇𝑇𝑀𝑀𝑢𝑢| ≤ ∑𝑖𝑖𝑑𝑑 𝜆𝜆𝑖𝑖 𝑢𝑢𝑖𝑖 ⋅ 𝑒𝑒𝑖𝑖 2

• Disc assumes worst case for 𝑓𝑓, ℎ, then 𝑢𝑢 ∝ 𝑒𝑒1
– Assumes 𝑢𝑢 in very specific direction
– 𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑 �𝑃𝑃, �𝑄𝑄 ∝ |𝜆𝜆1|
– Our choice �𝑄𝑄 determines 𝑓𝑓, very pessimistic
– Disc. doesn’t ‘spread’ well

�𝑃𝑃
�𝑄𝑄



13

Nuclear Discrepancy
• Assume 𝑢𝑢~𝑝𝑝(𝑢𝑢) and create probabilistic bound (holds in expectation)

– 𝑝𝑝 𝑢𝑢 should be symmetric
– Should be independent of our choice �𝑄𝑄

• Choose p(𝑢𝑢) uniform on sphere centered at origin [optimistic case]
– Optimal strategy: minimize Nuclear Discrepancy (proposed)
– 𝑁𝑁𝑀𝑀 �𝑃𝑃 , �𝑄𝑄 = ∑𝑖𝑖𝑑𝑑 |𝜆𝜆𝑖𝑖| (all directions are equally important)
– In this case, 𝑁𝑁𝑀𝑀 �𝑃𝑃, �𝑄𝑄 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀 �𝑃𝑃, �𝑄𝑄 ≤ 𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑( �𝑃𝑃, �𝑄𝑄)
– Our bound is tightest under this assumption
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Experimental setup
• Preprocess to remove model misspecification

– Train KRR on whole dataset, use predictions as new targets
– Assumption 𝜂𝜂 = 0 satisfied. Bounds compareable.
– Good hyperparameters make sure this is a reasonable 

approximation of the original binary label.

• Optimize 𝑑𝑑𝑑𝑑𝑑𝑑 �𝑄𝑄, �𝑃𝑃 greedily
– Discrepancy, MMD, Nuclear Discrepancy
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Experimental setup
• Budget = 1,2,3,…,50. 
• Repeat 100 times

– New trn/tst splits

• Evaluate on 15 datasets

• Performance in MSE
• Area Under Learning Curve 

– summarizes performance for multiple 
budgets (standard in AL)

• Significance test using paired 
t-test (p = 0.05)

Learning Curve
MNIST 5vs8
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Results
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Results
Assumption

Bound
Worst-case Performance

Disc Tightest Loosest Worst
MMD Medium Medium Medium
ND (ours) Loosest Tightest Best
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Discussion / Future work
• With no preprocessing:

– Bounds not directly comparable (𝜂𝜂𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝜂𝜂𝑀𝑀𝑖𝑖𝐷𝐷𝐷𝐷) 
– Similar trend observed
– Needs further investigation

• Now MSE, what about accuracy? Multiple rounds?

• Our results support the ideas of
– Germain et. al. (2013): probabilistic bounds for DA
– Cortes et. al. (2019): more refined worst-case analysis for 

Discrepancy for DA
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Conclusion
• Tighter bounds ≠ improved performance
• Assumptions of bounds: at least as important!

• Bonus theoretical results for MMD:
– Interpretation as probabilistic generalization bound

– Squared kernel 𝐾𝐾𝑀𝑀𝑀𝑀𝑀𝑀 𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗 = 𝐾𝐾𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑙𝑙 𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗
2 is a natural choice for 

𝐻𝐻′ in case of regression



20

Thanks!
Tom J Viering, Jesse H Krijthe, Marco Loog

Nuclear Discrepancy for Single-Shot Batch Active Learning
Code online: https://github.com/tomviering/NuclearDiscrepancy
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