



COPENHAGEN

ŤUDelft

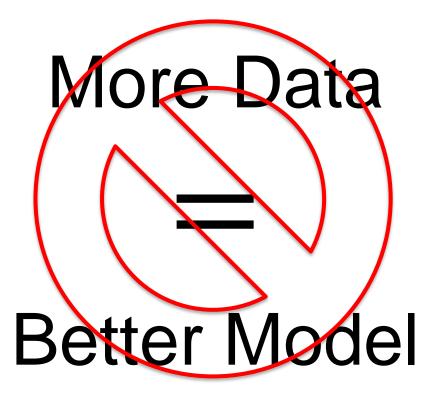
Making Learners (More) Monotone

Tom Viering, Alexander Mey, Marco Loog IDA 2020

Code available: https://github.com/tomviering/monotone

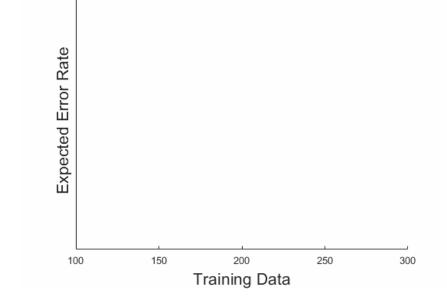
More Data

Better Model



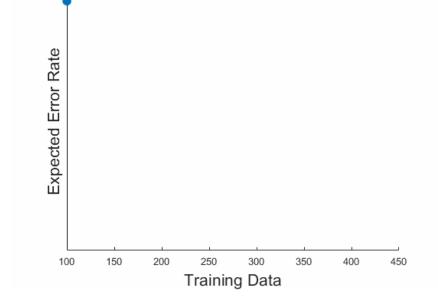
[Opper 1990], Peaking [Duin, 1995], Dipping [Loog 2012], Double Descent [Belkin 2019], Deep Double Descent [Nakkiran 2019], Monotonicity of Learning [Viering 2019], Risk Monotonicity [Loog 2019], [Loog 2020]

Expected Learning Curve



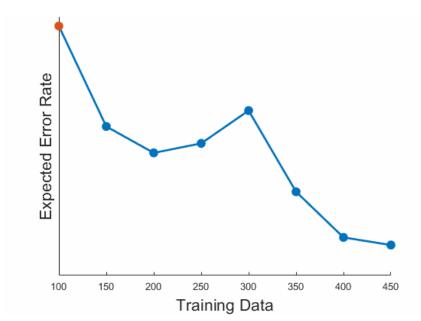
Expected = Averaged over multiple training datasets

Expected Learning Curve



Peaking Dataset [Duin, 1995]

What we want



TUDelft

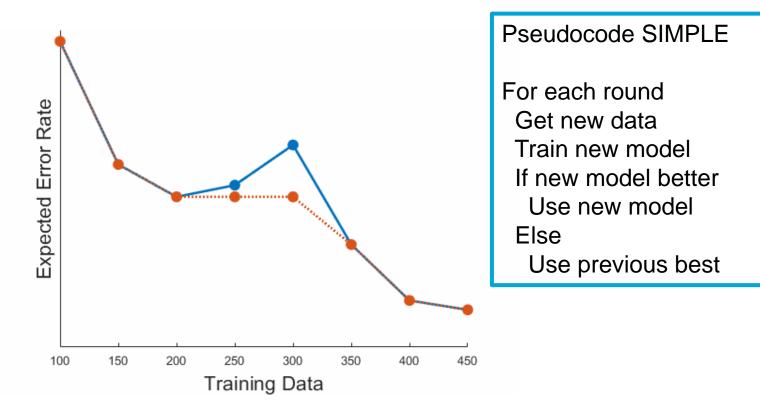
Wrapper Algorithm: makes learning curve of any classification model monotone

Wrapper Algorithm

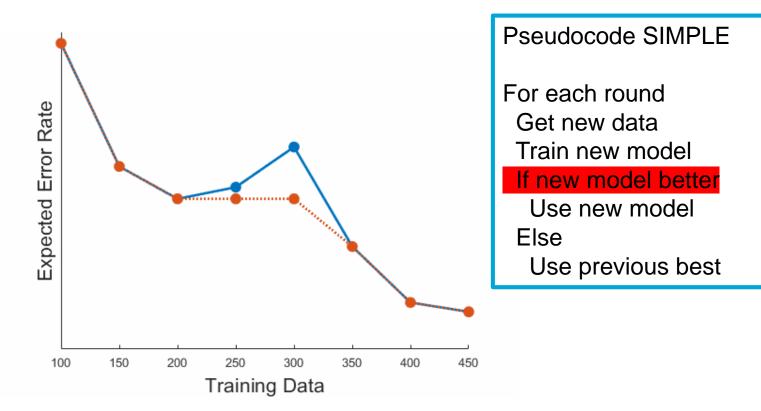
- Two ingredients
 - Model selection
 - Conservativeness

Idea 1: model selection

JDelft

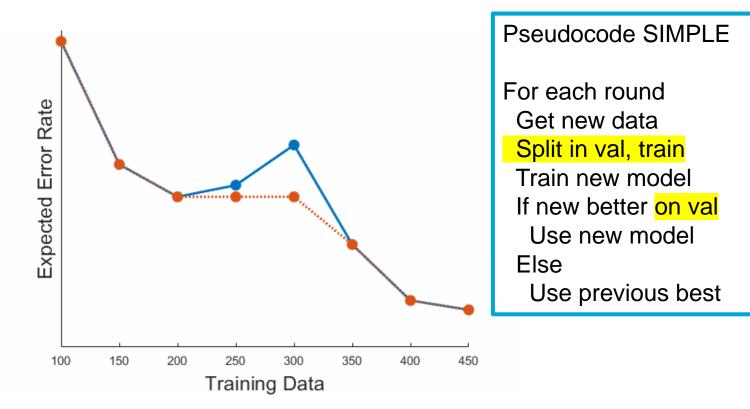


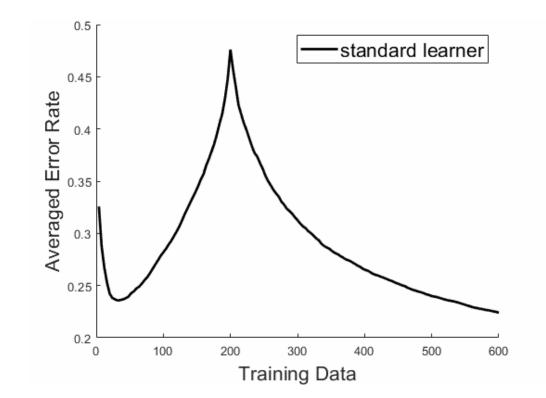
Idea 1: model selection

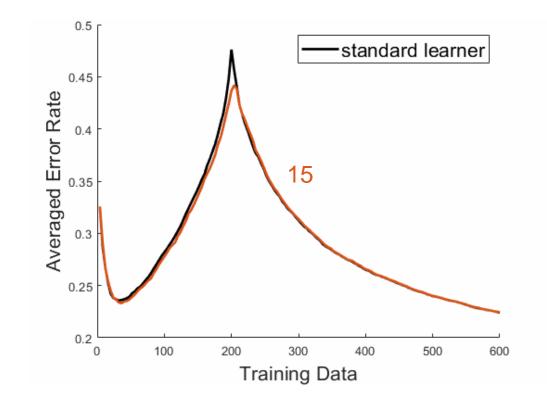


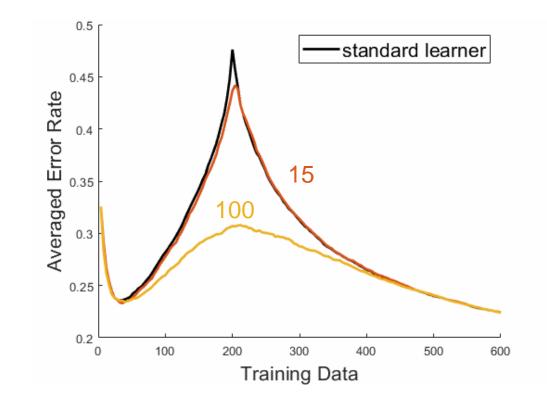
Idea 1: model selection

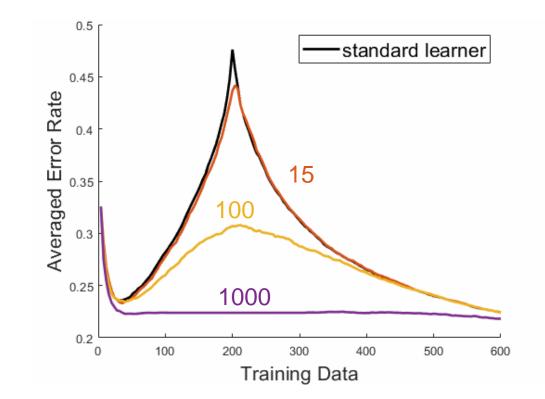
JDelft



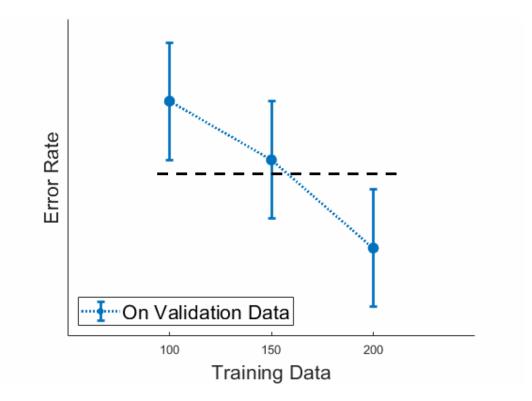








ŤUDelft



Idea 2: Conservativeness

- Hypothesis test = conservative
 - Only switch to worse model with probability $< \alpha$

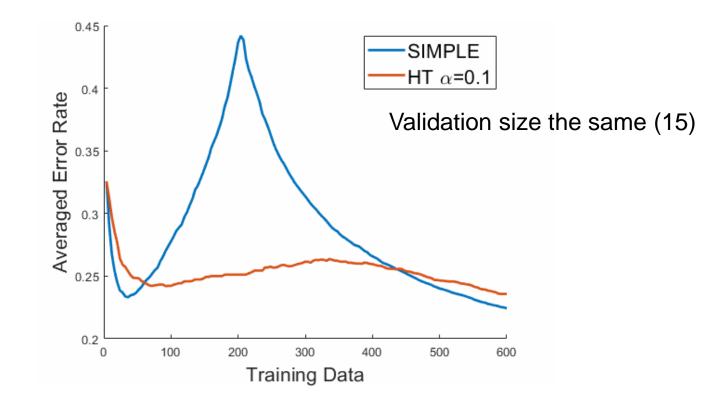
- Significance level $\alpha \in (0, \frac{1}{2}]$
 - Lower α = more conservative

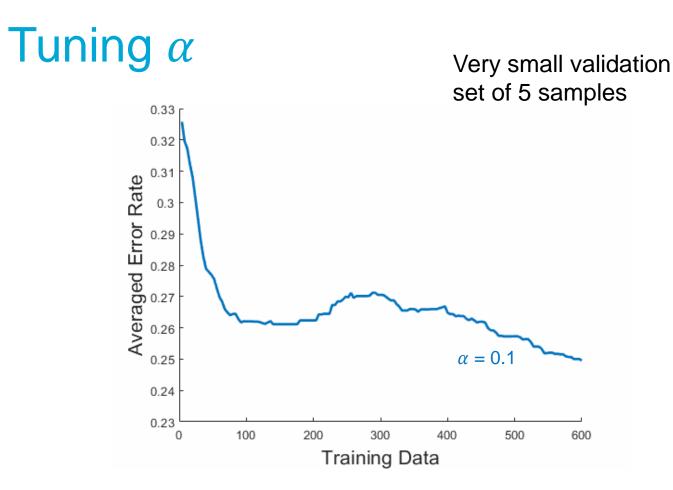
Theoretical Guarantees for HT

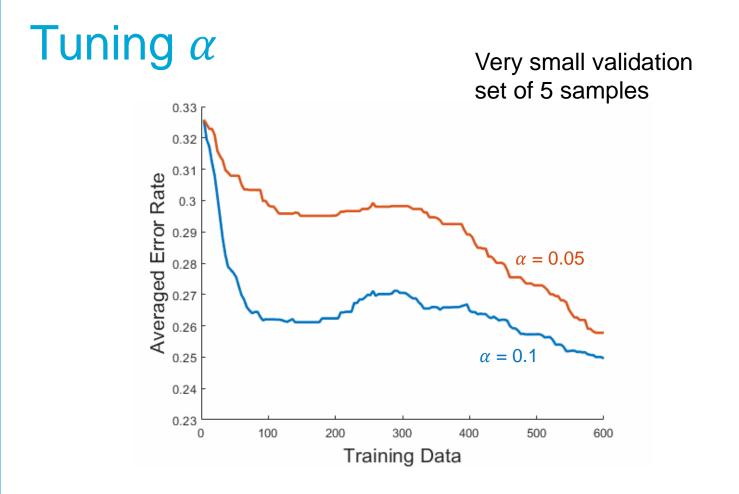
- 1. With probability $(1 \alpha)^n$ a single learning curve is monotone
 - Key assumption: i.i.d. data
 - Doesn't say anything about expected learning curve

- 2. Wrapper algorithm is consistent
 - Under some conditions...

Empirical Results

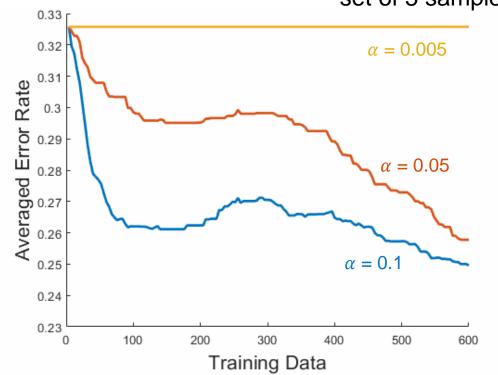






Tuning α

Very small validation set of 5 samples



TUDelft

Benchmark

- On Peaking, Dipping, MNIST
- Several baselines

- HT is by far the most monotone
- HT is competitive in performance, but learns slightly slower
- More monotone than guaranteed

Discussion

• Parameter α

• Expected curve monotone?

Conclusion

• Make any model monotone with high probability!

- Key ingredients to achieve monotonicity
 - Model selection
 - Conservativeness

Making Learners (More) Monotone

Tom Viering, Alexander Mey, Marco Loog

References for non-monotone behavior:

[Duin, 1995] Small sample size generalization ('peaking dataset')

[Loog 2012] The dipping phenomenon

UNIVERSITY OF COPENHAGEN [Belkin 2019] Reconciling modern machine-learning practice and the classical bias variance trade-off

[Nakkiran 2019] Deep Double Descent: Where Bigger Models and More Data Hurt

[Viering 2019] Open problem: Monotonicity of learning.

[Loog 2019] Minimizers of the Empirical Risk and Risk Monotonicity

[Loog 2020] A Brief Prehistory of Double Descent

Code available: https://github.com/tomviering/monotone