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Minimizers of the Empirical Risk 
             and Risk Monotonicity 
 
Popularly formulated, 
our works asks : 
Can one expect improved  
generalization performance  
with more training data? 
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Minimizers of the Empirical Risk 
             and Risk Monotonicity 
 
Popularly formulated, 
our works asks : 
Can one expect improved  
generalization performance  
with more training data? 

The answer? 
Majority of people : yes [of course!] 
Our paper : nope, unfortunately not 
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Making It a Bit More Precise… 

That learners become better  
with more training data  
seems intuitive 
 
Majority indeed takes it  
for granted that learning  
curves show improved  
performance with more data 
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Making It a Bit More Precise… 

The learning setting we consider : 
 𝑆𝑆𝑛𝑛 ∈ {𝑧𝑧1, … , 𝑧𝑧𝑛𝑛} sampled i.i.d. from 𝐷𝐷 over a domain 𝒵𝒵 
 Hypothesis class ℋ and loss ℓ:𝒵𝒵 × ℋ → ℝ 
 Learner 𝐴𝐴 maps from set of all samples 𝒮𝒮 to hypothesis class ℋ 
 𝑅𝑅𝐷𝐷 ℎ = 𝔼𝔼

𝑧𝑧~𝐷𝐷
ℓ(𝑧𝑧, ℎ) the expected true loss 

 

We want to study learning curves : 
 How does 𝔼𝔼

𝑆𝑆𝑛𝑛~𝐷𝐷𝑛𝑛
[𝑅𝑅𝐷𝐷 𝐴𝐴 𝑆𝑆𝑛𝑛 ] with increasing 𝑛𝑛 behave? 
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Monotonicity 

We want to study learning curves : 
 How does 𝔼𝔼

𝑆𝑆𝑛𝑛~𝐷𝐷𝑛𝑛
[𝑅𝑅𝐷𝐷 𝐴𝐴 𝑆𝑆𝑛𝑛 ] with increasing 𝑛𝑛 behave? 

 
In particular, we ask to what extent we have 
 𝔼𝔼

𝑆𝑆𝑛𝑛+1~𝐷𝐷𝑛𝑛+1
[𝑅𝑅𝐷𝐷 𝐴𝐴 𝑆𝑆𝑛𝑛+1 − 𝑅𝑅𝐷𝐷 𝐴𝐴 𝑆𝑆𝑛𝑛 ] ≤ 0  

for all distributions 𝐷𝐷 on domain 𝒵𝒵 
 We call this (rather basic) property locally monotonic in 𝑛𝑛 
 That is, the learning curves does not increase 
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Previous Monotonicity Results 
 
Micchelli (1979) : lower bound learning curves of Gaussian processes 
 
Many studies within context of neural networks were done at end of 
1980s, beginning of 1990s; Tishby, Haussler, and others 
 
End of 1990s, beginning of 2000s, focus shifts from neural nets to 
Gaussian processes; Opper, Sollich, and others 
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Previous Nonmonotonicity Results 
Duin (1995) shows underdetermined setting, least squares methods can 
behave nonmonotonic in terms of error rate a 

Devroye (1996) conjectures that consistent classifiers that perform 
better with increasing training sizes do not exist b 

Grünwald (2011) : unfortunate choice of prior gives nonmonotonicity  
Loog (2012) : best expected 0-1 loss can be attained for finite samples c 
 
 
a Directly related results have been presented by Opper (1996, 2001), Duin (2000), Krämer (2009), 
Belkin (2018), and Spigler (2018) 
b The conjecture is formulated following  some provably nonmonotonic consistent classifiers  
c Devroye (1996) already showed that likelihood models can converge to suboptimal classifiers; 
incidentally, Ben-David (2012) provides another dipping example 



KU  / 
TU 
Delft 

Our Nonmonotonicity Results 

Results by Duin, Devroy, and others hinge on 
 Fact that the model is underdetermined and/or 
 Discrepancy between loss optimized and loss evaluated with 
 [e.g. surrogate loss is optimized, evaluation in error rates] 
 

Our results : nonmonotonicity can occur at all sample sizes 
even when evaluation loss matches loss optimized (ERM!) 
 Moreover, we show such behavior for classification,  
 regression, and density estimation tasks 
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But Let’s Start Off Positively… 

 
Let ℋ be the class of normal distributions on ℝ𝑑𝑑  with given 
covariance matrix for which the mean is to be estimated 
Take 𝒵𝒵 ⊂ ℝ𝑑𝑑  and as loss the negative log-likelihood 
 
Theorem ∙ If 𝒵𝒵 is bounded, the learner 𝐴𝐴 is globally 
monotonic (i.e., locally monotonic for all 𝑛𝑛) 
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Our First Nonmonotonicity Result 

Consider linear models without intercept :  
take 𝒵𝒵 = 𝒳𝒳 × 𝒴𝒴 ⊂ ℝ𝑑𝑑 × {−1, +1} and ℋ = ℝ𝑑𝑑   
Let 𝐴𝐴 be the minimizer of the empirical risk 
 
Theorem ∙ Assume 𝐴𝐴 either optimizes the squared, the 
absolute, or the hinge loss.  Assume 𝒴𝒴 contains at least one 
element.  If there exists an open ball 𝐵𝐵0 ⊂ 𝒳𝒳, then this risk 
minimizer is not locally monotonic for any 𝑛𝑛 ∈ ℕ 
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Our Second Nonmonotonicity Result 

Let ℋ be the class of normal distributions on ℝ with given 
mean for which the variance is to be estimated 
With 𝒵𝒵 = ℝ, similar to the first results, we have 
 
Theorem ∙ Assume 𝐴𝐴 optimizes the negative log-likelihood.  
If there exists an open ball 𝐵𝐵0 ⊂ 𝒵𝒵, then this risk minimizer 
is not locally monotonic for any 𝑛𝑛 ∈ ℕ 
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Some Empirical Results 

E.g. to illustrate the funky 
shapes learning curves 
can take on a 
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a Code available through paper’s supplement 
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Some Empirical Results 

E.g. to illustrate that, 
also with intercept, 
stuff goes wrong a 

0 10 20 30 40
0.03

0.04

0.05

0.06

0.07

0.08

a Code available through paper’s supplement 



KU  / 
TU 
Delft 

Conclusions 

Learning curves can display unexpected behavior 
 
Our study : 
 Nonmonotonic behavior possible in well-determined ERM 
 Also indicates learning curves are not well understood 

 
We raise open issues and possible research directions 
 All of which should lead to further insight into such curves 
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